If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2+6x-7=0
a = 30; b = 6; c = -7;
Δ = b2-4ac
Δ = 62-4·30·(-7)
Δ = 876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{876}=\sqrt{4*219}=\sqrt{4}*\sqrt{219}=2\sqrt{219}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{219}}{2*30}=\frac{-6-2\sqrt{219}}{60} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{219}}{2*30}=\frac{-6+2\sqrt{219}}{60} $
| 3=-2v- | | 10-2n=90 | | n-1/6=1/2 | | 12y-1÷2=9y+8÷5 | | 5+x+4=9+2x | | j/4+1=4 | | 360=6t | | x/1+1=x/4-1 | | y÷4=4 | | 4x+3+x+2=180 | | 8+p=52 | | -3+y=40 | | y+-3=40 | | 36−4b=12 | | -5p+4=-6p | | X(2.39)+x(2.49)=46.21 | | 2x+15=40-x | | 48=56+8x | | 8y=28y+y | | 3g-9=-8g-9 | | 6x+3+8x-4=5x-7+4x-5 | | (1/3)(x+7)=5 | | 10-m=14 | | -5+x=33 | | x+-5=33 | | 141=-5x+33 | | 11x+5=3x+22 | | 5x-7x=-4(-4) | | 6n-2(4n+7)+4=-2 | | -10x-7=-63 | | 9=3(j+1 | | 38=w/5+3 |